A McKay Correspondence in Positive Characteristic
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We establish a McKay correspondence for finite and linearly reductive subgroup schemes of ${\mathbf {SL}}_2$ in positive characteristic. As an application, we obtain a McKay correspondence for all rational double point singularities in characteristic $p\geq 7$. We discuss linearly reductive quotient singularities and canonical lifts over the ring of Witt vectors. In dimension 2, we establish simultaneous resolutions of singularities of these canonical lifts via G-Hilbert schemes. In the appendix, we discuss several approaches towards the notion of conjugacy classes for finite group schemes: This is an ingredient in McKay correspondences, but also of independent interest.
@article{10_1017_fms_2024_98,
     author = {Christian Liedtke},
     title = {A {McKay} {Correspondence} in {Positive} {Characteristic}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.98},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.98/}
}
TY  - JOUR
AU  - Christian Liedtke
TI  - A McKay Correspondence in Positive Characteristic
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.98/
DO  - 10.1017/fms.2024.98
LA  - en
ID  - 10_1017_fms_2024_98
ER  - 
%0 Journal Article
%A Christian Liedtke
%T A McKay Correspondence in Positive Characteristic
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.98/
%R 10.1017/fms.2024.98
%G en
%F 10_1017_fms_2024_98
Christian Liedtke. A McKay Correspondence in Positive Characteristic. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.98

Cité par Sources :