Fusion Systems and Rank $2$ Simple Groups of Lie Type
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

For any prime p and S a p-group isomorphic to a Sylow p-subgroup of a rank $2$ simple group of Lie type in characteristic p, we determine all saturated fusion systems supported on S up to isomorphism.
@article{10_1017_fms_2024_94,
     author = {Martin van Beek},
     title = {Fusion {Systems} and {Rank} $2$ {Simple} {Groups} of {Lie} {Type}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.94},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.94/}
}
TY  - JOUR
AU  - Martin van Beek
TI  - Fusion Systems and Rank $2$ Simple Groups of Lie Type
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.94/
DO  - 10.1017/fms.2024.94
LA  - en
ID  - 10_1017_fms_2024_94
ER  - 
%0 Journal Article
%A Martin van Beek
%T Fusion Systems and Rank $2$ Simple Groups of Lie Type
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.94/
%R 10.1017/fms.2024.94
%G en
%F 10_1017_fms_2024_94
Martin van Beek. Fusion Systems and Rank $2$ Simple Groups of Lie Type. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.94

Cité par Sources :