On the lack of compactness in the axisymmetric neo-Hookean model
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We provide a fine description of the weak limit of sequences of regular axisymmetric maps with equibounded neo-Hookean energy, under the assumption that they have finite surface energy. We prove that these weak limits have a dipole structure, showing that the singular map described by Conti and De Lellis is generic in some sense. On this map, we provide the explicit relaxation of the neo-Hookean energy. We also make a link with Cartesian currents showing that the candidate for the relaxation we obtained presents strong similarities with the relaxed energy in the context of $\mathbb {S}^2$-valued harmonic maps.
@article{10_1017_fms_2024_9,
author = {Marco Barchiesi and Duvan Henao and Carlos Mora-Corral and R\'emy Rodiac},
title = {On the lack of compactness in the axisymmetric {neo-Hookean} model},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.9/}
}
TY - JOUR AU - Marco Barchiesi AU - Duvan Henao AU - Carlos Mora-Corral AU - Rémy Rodiac TI - On the lack of compactness in the axisymmetric neo-Hookean model JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.9/ DO - 10.1017/fms.2024.9 LA - en ID - 10_1017_fms_2024_9 ER -
%0 Journal Article %A Marco Barchiesi %A Duvan Henao %A Carlos Mora-Corral %A Rémy Rodiac %T On the lack of compactness in the axisymmetric neo-Hookean model %J Forum of Mathematics, Sigma %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.9/ %R 10.1017/fms.2024.9 %G en %F 10_1017_fms_2024_9
Marco Barchiesi; Duvan Henao; Carlos Mora-Corral; Rémy Rodiac. On the lack of compactness in the axisymmetric neo-Hookean model. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.9
Cité par Sources :