On the lack of compactness in the axisymmetric neo-Hookean model
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We provide a fine description of the weak limit of sequences of regular axisymmetric maps with equibounded neo-Hookean energy, under the assumption that they have finite surface energy. We prove that these weak limits have a dipole structure, showing that the singular map described by Conti and De Lellis is generic in some sense. On this map, we provide the explicit relaxation of the neo-Hookean energy. We also make a link with Cartesian currents showing that the candidate for the relaxation we obtained presents strong similarities with the relaxed energy in the context of $\mathbb {S}^2$-valued harmonic maps.
@article{10_1017_fms_2024_9,
     author = {Marco Barchiesi and Duvan Henao and Carlos Mora-Corral and R\'emy Rodiac},
     title = {On the lack of compactness in the axisymmetric {neo-Hookean} model},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.9/}
}
TY  - JOUR
AU  - Marco Barchiesi
AU  - Duvan Henao
AU  - Carlos Mora-Corral
AU  - Rémy Rodiac
TI  - On the lack of compactness in the axisymmetric neo-Hookean model
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.9/
DO  - 10.1017/fms.2024.9
LA  - en
ID  - 10_1017_fms_2024_9
ER  - 
%0 Journal Article
%A Marco Barchiesi
%A Duvan Henao
%A Carlos Mora-Corral
%A Rémy Rodiac
%T On the lack of compactness in the axisymmetric neo-Hookean model
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.9/
%R 10.1017/fms.2024.9
%G en
%F 10_1017_fms_2024_9
Marco Barchiesi; Duvan Henao; Carlos Mora-Corral; Rémy Rodiac. On the lack of compactness in the axisymmetric neo-Hookean model. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.9

Cité par Sources :