An update on Haiman’s conjectures
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 12 (2024)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We revisit Haiman’s conjecture on the relations between characters of Kazdhan–Lusztig basis elements of the Hecke algebra over $S_n$. The conjecture asserts that, for purposes of character evaluation, any Kazhdan–Lusztig basis element is reducible to a sum of the simplest possible ones (those associated to so-called codominant permutations). When the basis element is associated to a smooth permutation, we are able to give a geometric proof of this conjecture. On the other hand, if the permutation is singular, we provide a counterexample.
            
            
            
          
        
      @article{10_1017_fms_2024_86,
     author = {Alex Corr\^ea Abreu and Antonio Nigro},
     title = {An update on {Haiman{\textquoteright}s} conjectures},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.86},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.86/}
}
                      
                      
                    Alex Corrêa Abreu; Antonio Nigro. An update on Haiman’s conjectures. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.86
Cité par Sources :