A local-global principle for unipotent characters
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We obtain an adaptation of Dade’s Conjecture and Späth’s Character Triple Conjecture to unipotent characters of simple, simply connected finite reductive groups of type $\mathbf {A}$, $\mathbf {B}$ and $\mathbf {C}$. In particular, this gives a precise formula for counting the number of unipotent characters of each defect d in any Brauer $\ell $-block B in terms of local invariants associated to e-local structures. This provides a geometric version of the local-global principle in representation theory of finite groups. A key ingredient in our proof is the construction of certain parametrisations of unipotent generalised Harish-Chandra series that are compatible with isomorphisms of character triples.
@article{10_1017_fms_2024_78,
     author = {Damiano Rossi},
     title = {A local-global principle for unipotent characters},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.78},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.78/}
}
TY  - JOUR
AU  - Damiano Rossi
TI  - A local-global principle for unipotent characters
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.78/
DO  - 10.1017/fms.2024.78
LA  - en
ID  - 10_1017_fms_2024_78
ER  - 
%0 Journal Article
%A Damiano Rossi
%T A local-global principle for unipotent characters
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.78/
%R 10.1017/fms.2024.78
%G en
%F 10_1017_fms_2024_78
Damiano Rossi. A local-global principle for unipotent characters. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.78

Cité par Sources :