Whittaker coefficients of geometric Eisenstein series
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions on the moduli space of $\check {N}$-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein series as factorization homology and then invoking Beilinson and Drinfeld’s formula for chiral homology of a chiral enveloping algebra.
@article{10_1017_fms_2024_77,
author = {Jeremy Taylor},
title = {Whittaker coefficients of geometric {Eisenstein} series},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.77},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.77/}
}
Jeremy Taylor. Whittaker coefficients of geometric Eisenstein series. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.77
Cité par Sources :