Whittaker coefficients of geometric Eisenstein series
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Geometric Langlands predicts an isomorphism between Whittaker coefficients of Eisenstein series and functions on the moduli space of $\check {N}$-local systems. We prove this formula by interpreting Whittaker coefficients of Eisenstein series as factorization homology and then invoking Beilinson and Drinfeld’s formula for chiral homology of a chiral enveloping algebra.
@article{10_1017_fms_2024_77,
     author = {Jeremy Taylor},
     title = {Whittaker coefficients of geometric {Eisenstein} series},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.77},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.77/}
}
TY  - JOUR
AU  - Jeremy Taylor
TI  - Whittaker coefficients of geometric Eisenstein series
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.77/
DO  - 10.1017/fms.2024.77
LA  - en
ID  - 10_1017_fms_2024_77
ER  - 
%0 Journal Article
%A Jeremy Taylor
%T Whittaker coefficients of geometric Eisenstein series
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.77/
%R 10.1017/fms.2024.77
%G en
%F 10_1017_fms_2024_77
Jeremy Taylor. Whittaker coefficients of geometric Eisenstein series. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.77

Cité par Sources :