Two-Point Concentration of the Independence Number of the Random Graph
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We show that the independence number of $ G_{n,p}$ is concentrated on two values if $ n^{-2/3+ \epsilon } p \le 1$. This result is roughly best possible as an argument of Sah and Sawhney shows that the independence number is not, in general, concentrated on two values for $ p = o ( (\log (n)/n)^{2/3} )$. The extent of concentration of the independence number of $ G_{n,p}$ for $ \omega (1/n) p \le n^{-2/3}$ remains an interesting open question.
@article{10_1017_fms_2024_6,
author = {Tom Bohman and Jakob Hofstad},
title = {Two-Point {Concentration} of the {Independence} {Number} of the {Random} {Graph}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.6/}
}
TY - JOUR AU - Tom Bohman AU - Jakob Hofstad TI - Two-Point Concentration of the Independence Number of the Random Graph JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.6/ DO - 10.1017/fms.2024.6 LA - en ID - 10_1017_fms_2024_6 ER -
Tom Bohman; Jakob Hofstad. Two-Point Concentration of the Independence Number of the Random Graph. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.6
Cité par Sources :