Pressure of a dilute spin-polarized Fermi gas: Lower bound
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider a dilute fully spin-polarized Fermi gas at positive temperature in dimensions $d\in \{1,2,3\}$. We show that the pressure of the interacting gas is bounded from below by that of the free gas plus, to leading order, an explicit term of order $a^d\rho ^{2+2/d}$, where a is the p-wave scattering length of the repulsive interaction and $\rho $ is the particle density. The results are valid for a wide range of repulsive interactions, including that of a hard core, and uniform in temperatures at most of the order of the Fermi temperature. A central ingredient in the proof is a rigorous implementation of the fermionic cluster expansion of Gaudin, Gillespie and Ripka (Nucl. Phys. A, 176.2 (1971), pp. 237–260).
@article{10_1017_fms_2024_56,
     author = {Asbj{\o}rn B{\ae}kgaard Lauritsen and Robert Seiringer},
     title = {Pressure of a dilute spin-polarized {Fermi} gas: {Lower} bound},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.56},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.56/}
}
TY  - JOUR
AU  - Asbjørn Bækgaard Lauritsen
AU  - Robert Seiringer
TI  - Pressure of a dilute spin-polarized Fermi gas: Lower bound
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.56/
DO  - 10.1017/fms.2024.56
LA  - en
ID  - 10_1017_fms_2024_56
ER  - 
%0 Journal Article
%A Asbjørn Bækgaard Lauritsen
%A Robert Seiringer
%T Pressure of a dilute spin-polarized Fermi gas: Lower bound
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.56/
%R 10.1017/fms.2024.56
%G en
%F 10_1017_fms_2024_56
Asbjørn Bækgaard Lauritsen; Robert Seiringer. Pressure of a dilute spin-polarized Fermi gas: Lower bound. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.56

Cité par Sources :