The Coble quadric
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Given a smooth genus three curve C, the moduli space of rank two stable vector bundles on C with trivial determinant embeds in ${\mathbb {P}}^8$ as a hypersurface whose singular locus is the Kummer threefold of C; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover $\operatorname {\mathrm {SU}}_C(2,L)$, the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree L, as a subvariety of $G(2,8)$. In fact, each point $p\in C$ defines a natural embedding of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ in $G(2,8)$. We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ and thus deserves to be coined the Coble quadric of the pointed curve $(C,p)$.
@article{10_1017_fms_2024_52,
author = {Vladimiro Benedetti and Michele Bolognesi and Daniele Faenzi and Laurent Manivel},
title = {The {Coble} quadric},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.52},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.52/}
}
TY - JOUR AU - Vladimiro Benedetti AU - Michele Bolognesi AU - Daniele Faenzi AU - Laurent Manivel TI - The Coble quadric JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.52/ DO - 10.1017/fms.2024.52 LA - en ID - 10_1017_fms_2024_52 ER -
Vladimiro Benedetti; Michele Bolognesi; Daniele Faenzi; Laurent Manivel. The Coble quadric. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.52
Cité par Sources :