The Coble quadric
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Given a smooth genus three curve C, the moduli space of rank two stable vector bundles on C with trivial determinant embeds in ${\mathbb {P}}^8$ as a hypersurface whose singular locus is the Kummer threefold of C; this hypersurface is the Coble quartic. Gruson, Sam and Weyman realized that this quartic could be constructed from a general skew-symmetric four-form in eight variables. Using the lines contained in the quartic, we prove that a similar construction allows to recover $\operatorname {\mathrm {SU}}_C(2,L)$, the moduli space of rank two stable vector bundles on C with fixed determinant of odd degree L, as a subvariety of $G(2,8)$. In fact, each point $p\in C$ defines a natural embedding of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ in $G(2,8)$. We show that, for the generic such embedding, there exists a unique quadratic section of the Grassmannian which is singular exactly along the image of $\operatorname {\mathrm {SU}}_C(2,{\mathcal {O}}(p))$ and thus deserves to be coined the Coble quadric of the pointed curve $(C,p)$.
@article{10_1017_fms_2024_52,
     author = {Vladimiro Benedetti and Michele Bolognesi and Daniele Faenzi and Laurent Manivel},
     title = {The {Coble} quadric},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.52},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.52/}
}
TY  - JOUR
AU  - Vladimiro Benedetti
AU  - Michele Bolognesi
AU  - Daniele Faenzi
AU  - Laurent Manivel
TI  - The Coble quadric
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.52/
DO  - 10.1017/fms.2024.52
LA  - en
ID  - 10_1017_fms_2024_52
ER  - 
%0 Journal Article
%A Vladimiro Benedetti
%A Michele Bolognesi
%A Daniele Faenzi
%A Laurent Manivel
%T The Coble quadric
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.52/
%R 10.1017/fms.2024.52
%G en
%F 10_1017_fms_2024_52
Vladimiro Benedetti; Michele Bolognesi; Daniele Faenzi; Laurent Manivel. The Coble quadric. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.52

Cité par Sources :