Persistent transcendental Bézout theorems
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

An example of Cornalba and Shiffman from 1972 disproves in dimension two or higher a classical prediction that the count of zeros of holomorphic self-mappings of the complex linear space should be controlled by the maximum modulus function. We prove that such a bound holds for a modified coarse count inspired by the theory of persistence modules originating in topological data analysis.
@article{10_1017_fms_2024_49,
     author = {Lev Buhovsky and Iosif Polterovich and Leonid Polterovich and Egor Shelukhin and Vuka\v{s}in Stojisavljevi\'c},
     title = {Persistent transcendental {B\'ezout} theorems},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.49},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.49/}
}
TY  - JOUR
AU  - Lev Buhovsky
AU  - Iosif Polterovich
AU  - Leonid Polterovich
AU  - Egor Shelukhin
AU  - Vukašin Stojisavljević
TI  - Persistent transcendental Bézout theorems
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.49/
DO  - 10.1017/fms.2024.49
LA  - en
ID  - 10_1017_fms_2024_49
ER  - 
%0 Journal Article
%A Lev Buhovsky
%A Iosif Polterovich
%A Leonid Polterovich
%A Egor Shelukhin
%A Vukašin Stojisavljević
%T Persistent transcendental Bézout theorems
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.49/
%R 10.1017/fms.2024.49
%G en
%F 10_1017_fms_2024_49
Lev Buhovsky; Iosif Polterovich; Leonid Polterovich; Egor Shelukhin; Vukašin Stojisavljević. Persistent transcendental Bézout theorems. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.49

Cité par Sources :