O’Grady tenfolds as moduli spaces of sheaves
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We give a lattice-theoretic characterization for a manifold of $\operatorname {\mathrm {OG10}}$ type to be birational to some moduli space of (twisted) sheaves on a K3 surface. We apply it to the Li–Pertusi–Zhao variety of $\operatorname {\mathrm {OG10}}$ type associated to any smooth cubic fourfold. Moreover, we determine when a birational transformation is induced by an automorphism of the K3 surface, and we use this to classify all induced birational symplectic involutions.
@article{10_1017_fms_2024_46,
author = {Camilla Felisetti and Franco Giovenzana and Annalisa Grossi},
title = {O{\textquoteright}Grady tenfolds as moduli spaces of sheaves},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.46},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.46/}
}
TY - JOUR AU - Camilla Felisetti AU - Franco Giovenzana AU - Annalisa Grossi TI - O’Grady tenfolds as moduli spaces of sheaves JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.46/ DO - 10.1017/fms.2024.46 LA - en ID - 10_1017_fms_2024_46 ER -
Camilla Felisetti; Franco Giovenzana; Annalisa Grossi. O’Grady tenfolds as moduli spaces of sheaves. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.46
Cité par Sources :