Flags of sheaves, quivers and symmetric polynomials
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We study a quiver description of the nested Hilbert scheme of points on the affine plane and its higher rank generalization – that is, the moduli space of flags of framed torsion-free sheaves on the projective plane. We show that stable representations of the quiver provide an ADHM-like construction for such moduli spaces. We introduce a natural torus action and use equivariant localization to compute some of their (virtual) topological invariants, including the case of compact toric surfaces. We conjecture that the generating function of holomorphic Euler characteristics for rank one is given in terms of polynomials in the equivariant weights, which, for specific numerical types, coincide with (modified) Macdonald polynomials. From the physics viewpoint, the quivers we study describe a class of surface defects in four-dimensional supersymmetric gauge theories in terms of nested instantons.
@article{10_1017_fms_2024_43,
author = {Giulio Bonelli and Nadir Fasola and Alessandro Tanzini},
title = {Flags of sheaves, quivers and symmetric polynomials},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.43},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.43/}
}
TY - JOUR AU - Giulio Bonelli AU - Nadir Fasola AU - Alessandro Tanzini TI - Flags of sheaves, quivers and symmetric polynomials JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.43/ DO - 10.1017/fms.2024.43 LA - en ID - 10_1017_fms_2024_43 ER -
Giulio Bonelli; Nadir Fasola; Alessandro Tanzini. Flags of sheaves, quivers and symmetric polynomials. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.43
Cité par Sources :