The Ceresa class and tropical curves of hyperelliptic type
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We define a new algebraic invariant of a graph G called the Ceresa–Zharkov class and show that it is trivial if and only if G is of hyperelliptic type, equivalently, G does not have as a minor the complete graph on four vertices or the loop of three loops. After choosing edge lengths, this class specializes to an algebraic invariant of a tropical curve with underlying graph G that is closely related to the Ceresa cycle for an algebraic curve defined over $\mathbb {C}(\!(t)\!)$.
@article{10_1017_fms_2024_36,
     author = {Daniel Corey and Wanlin Li},
     title = {The {Ceresa} class and tropical curves of hyperelliptic type},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.36},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.36/}
}
TY  - JOUR
AU  - Daniel Corey
AU  - Wanlin Li
TI  - The Ceresa class and tropical curves of hyperelliptic type
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.36/
DO  - 10.1017/fms.2024.36
LA  - en
ID  - 10_1017_fms_2024_36
ER  - 
%0 Journal Article
%A Daniel Corey
%A Wanlin Li
%T The Ceresa class and tropical curves of hyperelliptic type
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.36/
%R 10.1017/fms.2024.36
%G en
%F 10_1017_fms_2024_36
Daniel Corey; Wanlin Li. The Ceresa class and tropical curves of hyperelliptic type. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.36

Cité par Sources :