Lie algebra actions on module categories for truncated shifted yangians
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We develop a theory of parabolic induction and restriction functors relating modules over Coulomb branch algebras, in the sense of Braverman-Finkelberg-Nakajima. Our functors generalize Bezrukavnikov-Etingof’s induction and restriction functors for Cherednik algebras, but their definition uses different tools.After this general definition, we focus on quiver gauge theories attached to a quiver $\Gamma $. The induction and restriction functors allow us to define a categorical action of the corresponding symmetric Kac-Moody algebra $\mathfrak {g}_{\Gamma }$ on category $ \mathcal {O}$ for these Coulomb branch algebras. When $ \Gamma $ is of Dynkin type, the Coulomb branch algebras are truncated shifted Yangians and quantize generalized affine Grassmannian slices. Thus, we regard our action as a categorification of the geometric Satake correspondence.To establish this categorical action, we define a new class of ‘flavoured’ KLRW algebras, which are similar to the diagrammatic algebras originally constructed by the second author for the purpose of tensor product categorification. We prove an equivalence between the category of Gelfand-Tsetlin modules over a Coulomb branch algebra and the modules over a flavoured KLRW algebra. This equivalence relates the categorical action by induction and restriction functors to the usual categorical action on modules over a KLRW algebra.
@article{10_1017_fms_2024_3,
author = {Joel Kamnitzer and Ben Webster and Alex Weekes and Oded Yacobi},
title = {Lie algebra actions on module categories for truncated shifted yangians},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.3/}
}
TY - JOUR AU - Joel Kamnitzer AU - Ben Webster AU - Alex Weekes AU - Oded Yacobi TI - Lie algebra actions on module categories for truncated shifted yangians JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.3/ DO - 10.1017/fms.2024.3 LA - en ID - 10_1017_fms_2024_3 ER -
%0 Journal Article %A Joel Kamnitzer %A Ben Webster %A Alex Weekes %A Oded Yacobi %T Lie algebra actions on module categories for truncated shifted yangians %J Forum of Mathematics, Sigma %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.3/ %R 10.1017/fms.2024.3 %G en %F 10_1017_fms_2024_3
Joel Kamnitzer; Ben Webster; Alex Weekes; Oded Yacobi. Lie algebra actions on module categories for truncated shifted yangians. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.3
Cité par Sources :