Finite skew braces of square-free order and supersolubility
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
The aim of this paper is to study supersoluble skew braces, a class of skew braces that encompasses all finite skew braces of square-free order. It turns out that finite supersoluble skew braces have Sylow towers and that in an arbitrary supersoluble skew brace B many relevant skew brace-theoretical properties are easier to identify: For example, a centrally nilpotent ideal of B is B-centrally nilpotent, a fact that simplifies the computational search for the Fitting ideal; also, B has finite multipermutational level if and only if $(B,+)$ is nilpotent.Given a finite presentation of the structure skew brace $G(X,r)$ associated with a finite nondegenerate solution of the Yang–Baxter equation (YBE), there is an algorithm that decides if $G(X,r)$ is supersoluble or not. Moreover, supersoluble skew braces are examples of almost polycyclic skew braces, so they give rise to solutions of the YBE on which one can algorithmically work on.
@article{10_1017_fms_2024_29,
author = {A. Ballester-Bolinches and R. Esteban-Romero and M. Ferrara and V. P\'erez-Calabuig and M. Trombetti},
title = {Finite skew braces of square-free order and supersolubility},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.29},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.29/}
}
TY - JOUR AU - A. Ballester-Bolinches AU - R. Esteban-Romero AU - M. Ferrara AU - V. Pérez-Calabuig AU - M. Trombetti TI - Finite skew braces of square-free order and supersolubility JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.29/ DO - 10.1017/fms.2024.29 LA - en ID - 10_1017_fms_2024_29 ER -
%0 Journal Article %A A. Ballester-Bolinches %A R. Esteban-Romero %A M. Ferrara %A V. Pérez-Calabuig %A M. Trombetti %T Finite skew braces of square-free order and supersolubility %J Forum of Mathematics, Sigma %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.29/ %R 10.1017/fms.2024.29 %G en %F 10_1017_fms_2024_29
A. Ballester-Bolinches; R. Esteban-Romero; M. Ferrara; V. Pérez-Calabuig; M. Trombetti. Finite skew braces of square-free order and supersolubility. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.29
Cité par Sources :