On the Turán number of the hypercube
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

In 1964, Erdős proposed the problem of estimating the Turán number of the d-dimensional hypercube $Q_d$. Since $Q_d$ is a bipartite graph with maximum degree d, it follows from results of Füredi and Alon, Krivelevich, Sudakov that $\mathrm {ex}(n,Q_d)=O_d(n^{2-1/d})$. A recent general result of Sudakov and Tomon implies the slightly stronger bound $\mathrm {ex}(n,Q_d)=o(n^{2-1/d})$. We obtain the first power-improvement for this old problem by showing that $\mathrm {ex}(n,Q_d)=O_d\left (n^{2-\frac {1}{d-1}+\frac {1}{(d-1)2^{d-1}}}\right )$. This answers a question of Liu. Moreover, our techniques give a power improvement for a larger class of graphs than cubes.We use a similar method to prove that any n-vertex, properly edge-coloured graph without a rainbow cycle has at most $O(n(\log n)^2)$ edges, improving the previous best bound of $n(\log n)^{2+o(1)}$ by Tomon. Furthermore, we show that any properly edge-coloured n-vertex graph with $\omega (n\log n)$ edges contains a cycle which is almost rainbow: that is, almost all edges in it have a unique colour. This latter result is tight.
@article{10_1017_fms_2024_27,
     author = {Oliver Janzer and Benny Sudakov},
     title = {On the {Tur\'an} number of the hypercube},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.27},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.27/}
}
TY  - JOUR
AU  - Oliver Janzer
AU  - Benny Sudakov
TI  - On the Turán number of the hypercube
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.27/
DO  - 10.1017/fms.2024.27
LA  - en
ID  - 10_1017_fms_2024_27
ER  - 
%0 Journal Article
%A Oliver Janzer
%A Benny Sudakov
%T On the Turán number of the hypercube
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.27/
%R 10.1017/fms.2024.27
%G en
%F 10_1017_fms_2024_27
Oliver Janzer; Benny Sudakov. On the Turán number of the hypercube. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.27

Cité par Sources :