Hyperfiniteness of boundary actions of acylindrically hyperbolic groups
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that, for any countable acylindrically hyperbolic group G, there exists a generating set S of G such that the corresponding Cayley graph $\Gamma (G,S)$ is hyperbolic, $|\partial \Gamma (G,S)|>2$, the natural action of G on $\Gamma (G,S)$ is acylindrical and the natural action of G on the Gromov boundary $\partial \Gamma (G,S)$ is hyperfinite. This result broadens the class of groups that admit a non-elementary acylindrical action on a hyperbolic space with a hyperfinite boundary action.
@article{10_1017_fms_2024_24,
     author = {Koichi Oyakawa},
     title = {Hyperfiniteness of boundary actions of acylindrically hyperbolic groups},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.24},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.24/}
}
TY  - JOUR
AU  - Koichi Oyakawa
TI  - Hyperfiniteness of boundary actions of acylindrically hyperbolic groups
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.24/
DO  - 10.1017/fms.2024.24
LA  - en
ID  - 10_1017_fms_2024_24
ER  - 
%0 Journal Article
%A Koichi Oyakawa
%T Hyperfiniteness of boundary actions of acylindrically hyperbolic groups
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.24/
%R 10.1017/fms.2024.24
%G en
%F 10_1017_fms_2024_24
Koichi Oyakawa. Hyperfiniteness of boundary actions of acylindrically hyperbolic groups. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.24

Cité par Sources :