Extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We present extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes, providing a common generalization to the matroidal versions of the theorem due to Kalai and Meshulam, the ‘very colorful’ Helly theorem introduced by Arocha, Bárány, Bracho, Fabila and Montejano and the ‘semi-intersecting’ colorful Helly theorem proved by Montejano and Karasev.As an application, we obtain the following extension of Tverberg’s theorem: Let A be a finite set of points in ${\mathbb R}^d$ with $|A|>(r-1)(d+1)$. Then, there exist a partition $A_1,\ldots ,A_r$ of A and a subset $B\subset A$ of size $(r-1)(d+1)$ such that $\cap _{i=1}^r \operatorname {\mathrm {\text {conv}}}( (B\cup \{p\})\cap A_i)\neq \emptyset $ for all $p\in A\setminus B$. That is, we obtain a partition of A into r parts that remains a Tverberg partition even after removing all but one arbitrary point from $A\setminus B$.
@article{10_1017_fms_2024_23,
author = {Minki Kim and Alan Lew},
title = {Extensions of the colorful {Helly} theorem for d-collapsible and {d-Leray} complexes},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.23},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.23/}
}
TY - JOUR AU - Minki Kim AU - Alan Lew TI - Extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.23/ DO - 10.1017/fms.2024.23 LA - en ID - 10_1017_fms_2024_23 ER -
Minki Kim; Alan Lew. Extensions of the colorful Helly theorem for d-collapsible and d-Leray complexes. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.23
Cité par Sources :