Generic Beauville’s Conjecture
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Let $\alpha \colon X \to Y$ be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under $\alpha $ is semistable if the genus of Y is at least $1$ and stable if the genus of Y is at least $2$. We prove this conjecture if the map $\alpha $ is general in any component of the Hurwitz space of covers of an arbitrary smooth curve Y.
@article{10_1017_fms_2024_21,
author = {Izzet Coskun and Eric Larson and Isabel Vogt},
title = {Generic {Beauville{\textquoteright}s} {Conjecture}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.21},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.21/}
}
Izzet Coskun; Eric Larson; Isabel Vogt. Generic Beauville’s Conjecture. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.21
Cité par Sources :