Generic Beauville’s Conjecture
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $\alpha \colon X \to Y$ be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under $\alpha $ is semistable if the genus of Y is at least $1$ and stable if the genus of Y is at least $2$. We prove this conjecture if the map $\alpha $ is general in any component of the Hurwitz space of covers of an arbitrary smooth curve Y.
@article{10_1017_fms_2024_21,
     author = {Izzet Coskun and Eric Larson and Isabel Vogt},
     title = {Generic {Beauville{\textquoteright}s} {Conjecture}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.21},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.21/}
}
TY  - JOUR
AU  - Izzet Coskun
AU  - Eric Larson
AU  - Isabel Vogt
TI  - Generic Beauville’s Conjecture
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.21/
DO  - 10.1017/fms.2024.21
LA  - en
ID  - 10_1017_fms_2024_21
ER  - 
%0 Journal Article
%A Izzet Coskun
%A Eric Larson
%A Isabel Vogt
%T Generic Beauville’s Conjecture
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.21/
%R 10.1017/fms.2024.21
%G en
%F 10_1017_fms_2024_21
Izzet Coskun; Eric Larson; Isabel Vogt. Generic Beauville’s Conjecture. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.21

Cité par Sources :