Equivariant Hodge polynomials of heavy/light moduli spaces
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $\overline {\mathcal {M}}_{g, m|n}$ denote Hassett’s moduli space of weighted pointed stable curves of genus g for the heavy/light weight data

$\begin{align*}\left(1^{(m)}, 1/n^{(n)}\right),\end{align*}$

and let $\mathcal {M}_{g, m|n} \subset \overline {\mathcal {M}}_{g, m|n}$ be the locus parameterizing smooth, not necessarily distinctly marked curves. We give a change-of-variables formula which computes the generating function for $(S_m\times S_n)$-equivariant Hodge–Deligne polynomials of these spaces in terms of the generating functions for $S_{n}$-equivariant Hodge–Deligne polynomials of $\overline {\mathcal {M}}_{g,n}$ and $\mathcal {M}_{g,n}$.
@article{10_1017_fms_2024_20,
     author = {Siddarth Kannan and Stefano Serpente and Claudia He Yun},
     title = {Equivariant {Hodge} polynomials of heavy/light moduli spaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.20/}
}
TY  - JOUR
AU  - Siddarth Kannan
AU  - Stefano Serpente
AU  - Claudia He Yun
TI  - Equivariant Hodge polynomials of heavy/light moduli spaces
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.20/
DO  - 10.1017/fms.2024.20
LA  - en
ID  - 10_1017_fms_2024_20
ER  - 
%0 Journal Article
%A Siddarth Kannan
%A Stefano Serpente
%A Claudia He Yun
%T Equivariant Hodge polynomials of heavy/light moduli spaces
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.20/
%R 10.1017/fms.2024.20
%G en
%F 10_1017_fms_2024_20
Siddarth Kannan; Stefano Serpente; Claudia He Yun. Equivariant Hodge polynomials of heavy/light moduli spaces. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.20

Cité par Sources :