Dirac geometry II: coherent cohomology
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Dirac rings are commutative algebras in the symmetric monoidal category of $\mathbb {Z}$-graded abelian groups with the Koszul sign in the symmetry isomorphism. In the prequel to this paper, we developed the commutative algebra of Dirac rings and defined the category of Dirac schemes. Here, we embed this category in the larger $\infty $-category of Dirac stacks, which also contains formal Dirac schemes, and develop the coherent cohomology of Dirac stacks. We apply the general theory to stable homotopy theory and use Quillen’s theorem on complex cobordism and Milnor’s theorem on the dual Steenrod algebra to identify the Dirac stacks corresponding to $\operatorname {MU}$ and $\mathbb {F}_p$ in terms of their functors of points. Finally, in an appendix, we develop a rudimentary theory of accessible presheaves.
@article{10_1017_fms_2024_2,
     author = {Lars Hesselholt and Piotr Pstr\k{a}gowski},
     title = {Dirac geometry {II:} coherent cohomology},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.2/}
}
TY  - JOUR
AU  - Lars Hesselholt
AU  - Piotr Pstrągowski
TI  - Dirac geometry II: coherent cohomology
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.2/
DO  - 10.1017/fms.2024.2
LA  - en
ID  - 10_1017_fms_2024_2
ER  - 
%0 Journal Article
%A Lars Hesselholt
%A Piotr Pstrągowski
%T Dirac geometry II: coherent cohomology
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.2/
%R 10.1017/fms.2024.2
%G en
%F 10_1017_fms_2024_2
Lars Hesselholt; Piotr Pstrągowski. Dirac geometry II: coherent cohomology. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.2

Cité par Sources :