Eichler–Selberg relations for singular moduli
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
The Eichler–Selberg trace formula expresses the trace of Hecke operators on spaces of cusp forms as weighted sums of Hurwitz–Kronecker class numbers. We extend this formula to a natural class of relations for traces of singular moduli, where one views class numbers as traces of the constant function $j_0(\tau )=1$. More generally, we consider the singular moduli for the Hecke system of modular functions For each $\nu \geq 0$ and $m\geq 1$, we obtain an Eichler–Selberg relation. For $\nu =0$ and $m\in \{1, 2\},$ these relations are Kaneko’s celebrated singular moduli formulas for the coefficients of $j(\tau ).$ For each $\nu \geq 1$ and $m\geq 1,$ we obtain a new Eichler–Selberg trace formula for the Hecke action on the space of weight $2 \nu +2$ cusp forms, where the traces of $j_m(\tau )$ singular moduli replace Hurwitz–Kronecker class numbers. These formulas involve a new term that is assembled from values of symmetrized shifted convolution L-functions.
@article{10_1017_fms_2024_126,
author = {Yuqi Deng and Toshiki Matsusaka and Ken Ono},
title = {Eichler{\textendash}Selberg relations for singular moduli},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.126/}
}
TY - JOUR AU - Yuqi Deng AU - Toshiki Matsusaka AU - Ken Ono TI - Eichler–Selberg relations for singular moduli JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.126/ DO - 10.1017/fms.2024.126 LA - en ID - 10_1017_fms_2024_126 ER -
Yuqi Deng; Toshiki Matsusaka; Ken Ono. Eichler–Selberg relations for singular moduli. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.126
Cité par Sources :