Regular Schur labeled skew shape posets and their 0-Hecke modules
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set $\{1, 2, \ldots , |P|\}$ such that the P-partition generating function is symmetric and the set of linear extensions of P, denoted $\Sigma _L(P)$, is a left weak Bruhat interval in the symmetric group $\mathfrak {S}_{|P|}$. We describe the permutations in $\Sigma _L(P)$ in terms of reading words of standard Young tableaux when P is a regular Schur labeled skew shape poset, and classify $\Sigma _L(P)$’s up to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape posets. The results obtained are then applied to classify the $0$-Hecke modules $\mathsf {M}_P$ associated with regular Schur labeled skew shape posets P up to isomorphism. Then we characterize regular Schur labeled skew shape posets as the finite posets P whose linear extensions form a dual plactic-closed subset of $\mathfrak {S}_{|P|}$. Using this characterization, we construct distinguished filtrations of $\mathsf {M}_P$ with respect to the Schur basis when P is a regular Schur labeled skew shape poset. Further issues concerned with the classification and decomposition of the $0$-Hecke modules $\mathsf {M}_P$ are also discussed.
@article{10_1017_fms_2024_116,
     author = {Young-Hun Kim and So-Yeon Lee and Young-Tak Oh},
     title = {Regular {Schur} labeled skew shape posets and their {0-Hecke} modules},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.116/}
}
TY  - JOUR
AU  - Young-Hun Kim
AU  - So-Yeon Lee
AU  - Young-Tak Oh
TI  - Regular Schur labeled skew shape posets and their 0-Hecke modules
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.116/
DO  - 10.1017/fms.2024.116
LA  - en
ID  - 10_1017_fms_2024_116
ER  - 
%0 Journal Article
%A Young-Hun Kim
%A So-Yeon Lee
%A Young-Tak Oh
%T Regular Schur labeled skew shape posets and their 0-Hecke modules
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.116/
%R 10.1017/fms.2024.116
%G en
%F 10_1017_fms_2024_116
Young-Hun Kim; So-Yeon Lee; Young-Tak Oh. Regular Schur labeled skew shape posets and their 0-Hecke modules. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.116

Cité par Sources :