Regular Schur labeled skew shape posets and their 0-Hecke modules
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
Assuming Stanley’s P-partitions conjecture holds, the regular Schur labeled skew shape posets are precisely the finite posets P with underlying set $\{1, 2, \ldots , |P|\}$ such that the P-partition generating function is symmetric and the set of linear extensions of P, denoted $\Sigma _L(P)$, is a left weak Bruhat interval in the symmetric group $\mathfrak {S}_{|P|}$. We describe the permutations in $\Sigma _L(P)$ in terms of reading words of standard Young tableaux when P is a regular Schur labeled skew shape poset, and classify $\Sigma _L(P)$’s up to descent-preserving isomorphism as P ranges over regular Schur labeled skew shape posets. The results obtained are then applied to classify the $0$-Hecke modules $\mathsf {M}_P$ associated with regular Schur labeled skew shape posets P up to isomorphism. Then we characterize regular Schur labeled skew shape posets as the finite posets P whose linear extensions form a dual plactic-closed subset of $\mathfrak {S}_{|P|}$. Using this characterization, we construct distinguished filtrations of $\mathsf {M}_P$ with respect to the Schur basis when P is a regular Schur labeled skew shape poset. Further issues concerned with the classification and decomposition of the $0$-Hecke modules $\mathsf {M}_P$ are also discussed.
@article{10_1017_fms_2024_116,
author = {Young-Hun Kim and So-Yeon Lee and Young-Tak Oh},
title = {Regular {Schur} labeled skew shape posets and their {0-Hecke} modules},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.116},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.116/}
}
TY - JOUR AU - Young-Hun Kim AU - So-Yeon Lee AU - Young-Tak Oh TI - Regular Schur labeled skew shape posets and their 0-Hecke modules JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.116/ DO - 10.1017/fms.2024.116 LA - en ID - 10_1017_fms_2024_116 ER -
%0 Journal Article %A Young-Hun Kim %A So-Yeon Lee %A Young-Tak Oh %T Regular Schur labeled skew shape posets and their 0-Hecke modules %J Forum of Mathematics, Sigma %D 2024 %V 12 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.116/ %R 10.1017/fms.2024.116 %G en %F 10_1017_fms_2024_116
Young-Hun Kim; So-Yeon Lee; Young-Tak Oh. Regular Schur labeled skew shape posets and their 0-Hecke modules. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.116
Cité par Sources :