The integral Chow ring of $\mathcal {M}_{1,n}$ for $n=3,\dots ,10$
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We compute the integral Chow ring of the moduli stack of smooth elliptic curves with n marked points for $3\leq n\leq 10$.
@article{10_1017_fms_2024_110,
     author = {Martin Bishop},
     title = {The integral {Chow} ring of $\mathcal {M}_{1,n}$ for $n=3,\dots ,10$},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.110},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.110/}
}
TY  - JOUR
AU  - Martin Bishop
TI  - The integral Chow ring of $\mathcal {M}_{1,n}$ for $n=3,\dots ,10$
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.110/
DO  - 10.1017/fms.2024.110
LA  - en
ID  - 10_1017_fms_2024_110
ER  - 
%0 Journal Article
%A Martin Bishop
%T The integral Chow ring of $\mathcal {M}_{1,n}$ for $n=3,\dots ,10$
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.110/
%R 10.1017/fms.2024.110
%G en
%F 10_1017_fms_2024_110
Martin Bishop. The integral Chow ring of $\mathcal {M}_{1,n}$ for $n=3,\dots ,10$. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.110

Cité par Sources :