Polypositroids
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We initiate the study of a class of polytopes, which we coin polypositroids, defined to be those polytopes that are simultaneously generalized permutohedra (or polymatroids) and alcoved polytopes. Whereas positroids are the matroids arising from the totally nonnegative Grassmannian, polypositroids are “positive” polymatroids. We parametrize polypositroids using Coxeter necklaces and balanced graphs, and describe the cone of polypositroids by extremal rays and facet inequalities. We introduce a notion of $(W,c)$-polypositroid for a finite Weyl group W and a choice of Coxeter element c. We connect the theory of $(W,c)$-polypositroids to cluster algebras of finite type and to generalized associahedra. We discuss membranes, which are certain triangulated 2-dimensional surfaces inside polypositroids. Membranes extend the notion of plabic graphs from positroids to polypositroids.
@article{10_1017_fms_2024_11,
     author = {Thomas Lam and Alexander Postnikov},
     title = {Polypositroids},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.11/}
}
TY  - JOUR
AU  - Thomas Lam
AU  - Alexander Postnikov
TI  - Polypositroids
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.11/
DO  - 10.1017/fms.2024.11
LA  - en
ID  - 10_1017_fms_2024_11
ER  - 
%0 Journal Article
%A Thomas Lam
%A Alexander Postnikov
%T Polypositroids
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.11/
%R 10.1017/fms.2024.11
%G en
%F 10_1017_fms_2024_11
Thomas Lam; Alexander Postnikov. Polypositroids. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.11

Cité par Sources :