A smooth compactification of spaces of stability conditions: the case of the $A_{n}$-quiver
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We propose a notion of multi-scale stability conditions with the goal of providing a smooth compactification of the quotient of the space of projectivized Bridgeland stability conditions by the group of autoequivalence. For the case of the 3CY category associated with the $A_n$-quiver, this goal is achieved by defining a topology and complex structure that relies on a plumbing construction.We compare this compactification to the multi-scale compactification of quadratic differentials and briefly indicate why even for the Kronecker quiver, this notion needs refinement to provide a full compactification.
@article{10_1017_fms_2024_106,
author = {Anna Barbieri and Martin M\"oller and Jeonghoon So},
title = {A smooth compactification of spaces of stability conditions: the case of the $A_{n}$-quiver},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2024.106},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.106/}
}
TY - JOUR
AU - Anna Barbieri
AU - Martin Möller
AU - Jeonghoon So
TI - A smooth compactification of spaces of stability conditions: the case of the $A_{n}$-quiver
JO - Forum of Mathematics, Sigma
PY - 2024
VL - 12
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.106/
DO - 10.1017/fms.2024.106
LA - en
ID - 10_1017_fms_2024_106
ER -
%0 Journal Article
%A Anna Barbieri
%A Martin Möller
%A Jeonghoon So
%T A smooth compactification of spaces of stability conditions: the case of the $A_{n}$-quiver
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.106/
%R 10.1017/fms.2024.106
%G en
%F 10_1017_fms_2024_106
Anna Barbieri; Martin Möller; Jeonghoon So. A smooth compactification of spaces of stability conditions: the case of the $A_{n}$-quiver. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.106
Cité par Sources :