Rational torsion points on abelian surfaces with quaternionic multiplication
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

Let A be an abelian surface over ${\mathbb {Q}}$ whose geometric endomorphism ring is a maximal order in a non-split quaternion algebra. Inspired by Mazur’s theorem for elliptic curves, we show that the torsion subgroup of $A({\mathbb {Q}})$ is $12$-torsion and has order at most $18$. Under the additional assumption that A is of $ {\mathrm{GL}}_2$-type, we give a complete classification of the possible torsion subgroups of $A({\mathbb {Q}})$.
@article{10_1017_fms_2024_105,
     author = {Jef Laga and Ciaran Schembri and Ari Shnidman and John Voight},
     title = {Rational torsion points on abelian surfaces with quaternionic multiplication},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2024.105},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.105/}
}
TY  - JOUR
AU  - Jef Laga
AU  - Ciaran Schembri
AU  - Ari Shnidman
AU  - John Voight
TI  - Rational torsion points on abelian surfaces with quaternionic multiplication
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.105/
DO  - 10.1017/fms.2024.105
LA  - en
ID  - 10_1017_fms_2024_105
ER  - 
%0 Journal Article
%A Jef Laga
%A Ciaran Schembri
%A Ari Shnidman
%A John Voight
%T Rational torsion points on abelian surfaces with quaternionic multiplication
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2024.105/
%R 10.1017/fms.2024.105
%G en
%F 10_1017_fms_2024_105
Jef Laga; Ciaran Schembri; Ari Shnidman; John Voight. Rational torsion points on abelian surfaces with quaternionic multiplication. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2024.105

Cité par Sources :