Hensel minimality II: Mixed characteristic and a diophantine application
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              In this paper, together with the preceding Part I [10], we develop a framework for tame geometry on Henselian valued fields of characteristic zero, called Hensel minimality. It adds to [10] the treatment of the mixed characteristic case. Hensel minimality is inspired by o-minimality and its role in real geometry and diophantine applications. We develop geometric results and applications for Hensel minimal structures that were previously known only under stronger or less axiomatic assumptions, and which often have counterparts in o-minimal structures. We prove a Jacobian property, a strong form of Taylor approximations of definable functions, resplendency results and cell decomposition, all under Hensel minimality – more precisely, $1$-h-minimality. We obtain a diophantine application of counting rational points of bounded height on Hensel minimal curves.
            
            
            
          
        
      @article{10_1017_fms_2023_91,
     author = {Raf Cluckers and Immanuel Halupczok and Silvain Rideau-Kikuchi and Floris Vermeulen},
     title = {Hensel minimality {II:} {Mixed} characteristic and a diophantine application},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.91},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.91/}
}
                      
                      
                    TY - JOUR AU - Raf Cluckers AU - Immanuel Halupczok AU - Silvain Rideau-Kikuchi AU - Floris Vermeulen TI - Hensel minimality II: Mixed characteristic and a diophantine application JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.91/ DO - 10.1017/fms.2023.91 LA - en ID - 10_1017_fms_2023_91 ER -
%0 Journal Article %A Raf Cluckers %A Immanuel Halupczok %A Silvain Rideau-Kikuchi %A Floris Vermeulen %T Hensel minimality II: Mixed characteristic and a diophantine application %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.91/ %R 10.1017/fms.2023.91 %G en %F 10_1017_fms_2023_91
Raf Cluckers; Immanuel Halupczok; Silvain Rideau-Kikuchi; Floris Vermeulen. Hensel minimality II: Mixed characteristic and a diophantine application. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.91
Cité par Sources :
