On Duclos–Exner’s conjecture about waveguides in strong uniform magnetic fields
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider the Dirichlet Laplacian with uniform magnetic field on a curved strip in two dimensions. We give a sufficient condition on the width and the curvature of the strip ensuring the existence of the discrete spectrum in the strong magnetic field limit, answering (negatively) a conjecture made by Duclos and Exner.
@article{10_1017_fms_2023_9,
     author = {Enguerrand Bon-Lavigne and Lo{\"\i}c Le Treust and Nicolas Raymond and Julien Royer},
     title = {On {Duclos{\textendash}Exner{\textquoteright}s} conjecture about waveguides in strong uniform magnetic fields},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.9/}
}
TY  - JOUR
AU  - Enguerrand Bon-Lavigne
AU  - Loïc Le Treust
AU  - Nicolas Raymond
AU  - Julien Royer
TI  - On Duclos–Exner’s conjecture about waveguides in strong uniform magnetic fields
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.9/
DO  - 10.1017/fms.2023.9
LA  - en
ID  - 10_1017_fms_2023_9
ER  - 
%0 Journal Article
%A Enguerrand Bon-Lavigne
%A Loïc Le Treust
%A Nicolas Raymond
%A Julien Royer
%T On Duclos–Exner’s conjecture about waveguides in strong uniform magnetic fields
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.9/
%R 10.1017/fms.2023.9
%G en
%F 10_1017_fms_2023_9
Enguerrand Bon-Lavigne; Loïc Le Treust; Nicolas Raymond; Julien Royer. On Duclos–Exner’s conjecture about waveguides in strong uniform magnetic fields. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.9

Cité par Sources :