Tower Gaps in Multicolour Ramsey Numbers
Forum of Mathematics, Sigma, Tome 11 (2023)
Voir la notice de l'article provenant de la source Cambridge University Press
Resolving a problem of Conlon, Fox and Rödl, we construct a family of hypergraphs with arbitrarily large tower height separation between their $2$-colour and q-colour Ramsey numbers. The main lemma underlying this construction is a new variant of the Erdős–Hajnal stepping-up lemma for a generalized Ramsey number $r_k(t;q,p)$, which we define as the smallest integer n such that every q-colouring of the k-sets on n vertices contains a set of t vertices spanning fewer than p colours. Our results provide the first tower-type lower bounds on these numbers.
@article{10_1017_fms_2023_89,
author = {Quentin Dubroff and Ant\'onio Gir\~ao and Eoin Hurley and Corrine Yap},
title = {Tower {Gaps} in {Multicolour} {Ramsey} {Numbers}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fms.2023.89},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.89/}
}
TY - JOUR AU - Quentin Dubroff AU - António Girão AU - Eoin Hurley AU - Corrine Yap TI - Tower Gaps in Multicolour Ramsey Numbers JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.89/ DO - 10.1017/fms.2023.89 LA - en ID - 10_1017_fms_2023_89 ER -
Quentin Dubroff; António Girão; Eoin Hurley; Corrine Yap. Tower Gaps in Multicolour Ramsey Numbers. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.89
Cité par Sources :