Tower Gaps in Multicolour Ramsey Numbers
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Resolving a problem of Conlon, Fox and Rödl, we construct a family of hypergraphs with arbitrarily large tower height separation between their $2$-colour and q-colour Ramsey numbers. The main lemma underlying this construction is a new variant of the Erdős–Hajnal stepping-up lemma for a generalized Ramsey number $r_k(t;q,p)$, which we define as the smallest integer n such that every q-colouring of the k-sets on n vertices contains a set of t vertices spanning fewer than p colours. Our results provide the first tower-type lower bounds on these numbers.
@article{10_1017_fms_2023_89,
     author = {Quentin Dubroff and Ant\'onio Gir\~ao and Eoin Hurley and Corrine Yap},
     title = {Tower {Gaps} in {Multicolour} {Ramsey} {Numbers}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.89},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.89/}
}
TY  - JOUR
AU  - Quentin Dubroff
AU  - António Girão
AU  - Eoin Hurley
AU  - Corrine Yap
TI  - Tower Gaps in Multicolour Ramsey Numbers
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.89/
DO  - 10.1017/fms.2023.89
LA  - en
ID  - 10_1017_fms_2023_89
ER  - 
%0 Journal Article
%A Quentin Dubroff
%A António Girão
%A Eoin Hurley
%A Corrine Yap
%T Tower Gaps in Multicolour Ramsey Numbers
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.89/
%R 10.1017/fms.2023.89
%G en
%F 10_1017_fms_2023_89
Quentin Dubroff; António Girão; Eoin Hurley; Corrine Yap. Tower Gaps in Multicolour Ramsey Numbers. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.89

Cité par Sources :