K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We prove that the alpha invariant of a quasi-smooth Fano 3-fold weighted hypersurface of index $1$ is greater than or equal to $1/2$. Combining this with the result of Stibitz and Zhuang [SZ19] on a relation between birational superrigidity and K-stability, we prove the K-stability of a birationally superrigid quasi-smooth Fano 3-fold weighted hypersurfaces of index $1$.
            
            
            
          
        
      @article{10_1017_fms_2023_87,
     author = {In-Kyun Kim and Takuzo Okada and Joonyeong Won},
     title = {K-stability of birationally superrigid {Fano} 3-fold weighted hypersurfaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.87},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.87/}
}
                      
                      
                    TY - JOUR AU - In-Kyun Kim AU - Takuzo Okada AU - Joonyeong Won TI - K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.87/ DO - 10.1017/fms.2023.87 LA - en ID - 10_1017_fms_2023_87 ER -
%0 Journal Article %A In-Kyun Kim %A Takuzo Okada %A Joonyeong Won %T K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.87/ %R 10.1017/fms.2023.87 %G en %F 10_1017_fms_2023_87
In-Kyun Kim; Takuzo Okada; Joonyeong Won. K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.87
Cité par Sources :
