K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the alpha invariant of a quasi-smooth Fano 3-fold weighted hypersurface of index $1$ is greater than or equal to $1/2$. Combining this with the result of Stibitz and Zhuang [SZ19] on a relation between birational superrigidity and K-stability, we prove the K-stability of a birationally superrigid quasi-smooth Fano 3-fold weighted hypersurfaces of index $1$.
@article{10_1017_fms_2023_87,
     author = {In-Kyun Kim and Takuzo Okada and Joonyeong Won},
     title = {K-stability of birationally superrigid {Fano} 3-fold weighted hypersurfaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.87},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.87/}
}
TY  - JOUR
AU  - In-Kyun Kim
AU  - Takuzo Okada
AU  - Joonyeong Won
TI  - K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.87/
DO  - 10.1017/fms.2023.87
LA  - en
ID  - 10_1017_fms_2023_87
ER  - 
%0 Journal Article
%A In-Kyun Kim
%A Takuzo Okada
%A Joonyeong Won
%T K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.87/
%R 10.1017/fms.2023.87
%G en
%F 10_1017_fms_2023_87
In-Kyun Kim; Takuzo Okada; Joonyeong Won. K-stability of birationally superrigid Fano 3-fold weighted hypersurfaces. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.87

Cité par Sources :