A lattice theoretical interpretation of generalized deep holes of the Leech lattice vertex operator algebra
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We give a lattice theoretical interpretation of generalized deep holes of the Leech lattice VOA $V_\Lambda $. We show that a generalized deep hole defines a ‘true’ automorphism invariant deep hole of the Leech lattice. We also show that there is a correspondence between the set of isomorphism classes of holomorphic VOA V of central charge $24$ having non-abelian $V_1$ and the set of equivalence classes of pairs $(\tau , \tilde {\beta })$ satisfying certain conditions, where $\tau \in Co.0$ and $\tilde {\beta }$ is a $\tau $-invariant deep hole of squared length $2$. It provides a new combinatorial approach towards the classification of holomorphic VOAs of central charge $24$. In particular, we give an explanation for an observation of G. Höhn, which relates the weight one Lie algebras of holomorphic VOAs of central charge $24$ to certain codewords associated with the glue codes of Niemeier lattices.
            
            
            
          
        
      @article{10_1017_fms_2023_86,
     author = {Ching Hung Lam and Masahiko Miyamoto},
     title = {A lattice theoretical interpretation of generalized deep holes of the {Leech} lattice vertex operator algebra},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.86},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.86/}
}
                      
                      
                    TY - JOUR AU - Ching Hung Lam AU - Masahiko Miyamoto TI - A lattice theoretical interpretation of generalized deep holes of the Leech lattice vertex operator algebra JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.86/ DO - 10.1017/fms.2023.86 LA - en ID - 10_1017_fms_2023_86 ER -
%0 Journal Article %A Ching Hung Lam %A Masahiko Miyamoto %T A lattice theoretical interpretation of generalized deep holes of the Leech lattice vertex operator algebra %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.86/ %R 10.1017/fms.2023.86 %G en %F 10_1017_fms_2023_86
Ching Hung Lam; Masahiko Miyamoto. A lattice theoretical interpretation of generalized deep holes of the Leech lattice vertex operator algebra. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.86
Cité par Sources :
