Smooth Compactifications of the Abel-Jacobi Section
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

For $\theta $ a small generic universal stability condition of degree $0$ and A a vector of integers adding up to $-k(2g-2+n)$, the spaces $\overline {\mathcal {M}}_{g,A}^\theta $ constructed in [AP21, HMP+22] are observed to lie inside the space $\textbf {Div}$ of [MW20], and their pullback under $\textbf {Rub} \to \textbf {Div}$ of loc. cit. to be smooth. This provides smooth and modular modifications $\widetilde {\mathcal {M}}_{g,A}^\theta $ of $\overline {\mathcal {M}}_{g,n}$ on which the logarithmic double ramification cycle can be calculated by several methods.
@article{10_1017_fms_2023_83,
     author = {Sam Molcho},
     title = {Smooth {Compactifications} of the {Abel-Jacobi} {Section}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.83},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.83/}
}
TY  - JOUR
AU  - Sam Molcho
TI  - Smooth Compactifications of the Abel-Jacobi Section
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.83/
DO  - 10.1017/fms.2023.83
LA  - en
ID  - 10_1017_fms_2023_83
ER  - 
%0 Journal Article
%A Sam Molcho
%T Smooth Compactifications of the Abel-Jacobi Section
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.83/
%R 10.1017/fms.2023.83
%G en
%F 10_1017_fms_2023_83
Sam Molcho. Smooth Compactifications of the Abel-Jacobi Section. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.83

Cité par Sources :