Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field ${{\mathbb {F}}\,\!{}}$. For the universal mod p pseudodeformation ring ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ of ${\overline {{D}}}$, we prove the following: The ring $\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$ is equidimensional of dimension $dn^2+1$. Its reduced quotient ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$ contains a dense open subset of regular points x whose associated pseudocharacter ${D}_x$ is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of ${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$. Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring ${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$ of ${\overline {{D}}}$.
            
            
            
          
        
      @article{10_1017_fms_2023_82,
     author = {Gebhard B\"ockle and Ann-Kristin Juschka},
     title = {Equidimensionality of universal pseudodeformation rings in characteristic p for absolute {Galois} groups of p-adic fields},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.82/}
}
                      
                      
                    TY - JOUR AU - Gebhard Böckle AU - Ann-Kristin Juschka TI - Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.82/ DO - 10.1017/fms.2023.82 LA - en ID - 10_1017_fms_2023_82 ER -
%0 Journal Article %A Gebhard Böckle %A Ann-Kristin Juschka %T Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.82/ %R 10.1017/fms.2023.82 %G en %F 10_1017_fms_2023_82
Gebhard Böckle; Ann-Kristin Juschka. Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.82
Cité par Sources :
