Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Let K be a finite extension of the p-adic field ${\mathbb {Q}}_p$ of degree d, let ${{\mathbb {F}}\,\!{}}$ be a finite field of characteristic p and let ${\overline {{D}}}$ be an n-dimensional pseudocharacter in the sense of Chenevier of the absolute Galois group of K over the field ${{\mathbb {F}}\,\!{}}$. For the universal mod p pseudodeformation ring ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$ of ${\overline {{D}}}$, we prove the following: The ring $\overline R_{{\overline {{D}}}}^{\mathrm {ps}}$ is equidimensional of dimension $dn^2+1$. Its reduced quotient ${\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}},{\operatorname {red}}}}}$ contains a dense open subset of regular points x whose associated pseudocharacter ${D}_x$ is absolutely irreducible and nonspecial in a certain technical sense that we shall define. Moreover, we will characterize in most cases when K does not contain a p-th root of unity the singular locus of ${\mathrm {Spec}}\ {\overline {R}{{\phantom {\overline {\overline m}}}}^{\operatorname {univ}}_{{{\overline {{D}}}}}}$. Similar results were proved by Chenevier for the generic fiber of the universal pseudodeformation ring ${R{{\phantom {\overline {m}}}}^{\operatorname {univ}}_{{{\overline {D}}}}}$ of ${\overline {{D}}}$.
@article{10_1017_fms_2023_82,
     author = {Gebhard B\"ockle and Ann-Kristin Juschka},
     title = {Equidimensionality of universal pseudodeformation rings in characteristic p for absolute {Galois} groups of p-adic fields},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.82/}
}
TY  - JOUR
AU  - Gebhard Böckle
AU  - Ann-Kristin Juschka
TI  - Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.82/
DO  - 10.1017/fms.2023.82
LA  - en
ID  - 10_1017_fms_2023_82
ER  - 
%0 Journal Article
%A Gebhard Böckle
%A Ann-Kristin Juschka
%T Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.82/
%R 10.1017/fms.2023.82
%G en
%F 10_1017_fms_2023_82
Gebhard Böckle; Ann-Kristin Juschka. Equidimensionality of universal pseudodeformation rings in characteristic p for absolute Galois groups of p-adic fields. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.82

Cité par Sources :