Mutation-finite quivers with real weights
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We classify all mutation-finite quivers with real weights. We show that every finite mutation class not originating from an integer skew-symmetrisable matrix has a geometric realisation by reflections. We also explore the structure of acyclic representatives in finite mutation classes and their relations to acute-angled simplicial domains in the corresponding reflection groups.
@article{10_1017_fms_2023_8,
     author = {Anna Felikson and Pavel Tumarkin},
     title = {Mutation-finite quivers with real weights},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.8/}
}
TY  - JOUR
AU  - Anna Felikson
AU  - Pavel Tumarkin
TI  - Mutation-finite quivers with real weights
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.8/
DO  - 10.1017/fms.2023.8
LA  - en
ID  - 10_1017_fms_2023_8
ER  - 
%0 Journal Article
%A Anna Felikson
%A Pavel Tumarkin
%T Mutation-finite quivers with real weights
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.8/
%R 10.1017/fms.2023.8
%G en
%F 10_1017_fms_2023_8
Anna Felikson; Pavel Tumarkin. Mutation-finite quivers with real weights. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.8

Cité par Sources :