Stability for hyperbolic groups acting on boundary spheres
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

A hyperbolic group G acts by homeomorphisms on its Gromov boundary. We show that if $\partial G$ is a topological n–sphere, the action is topologically stable in the dynamical sense: any nearby action is semi-conjugate to the standard boundary action.
@article{10_1017_fms_2023_78,
     author = {Kathryn Mann and Jason Fox Manning},
     title = {Stability for hyperbolic groups acting on boundary spheres},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.78},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.78/}
}
TY  - JOUR
AU  - Kathryn Mann
AU  - Jason Fox Manning
TI  - Stability for hyperbolic groups acting on boundary spheres
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.78/
DO  - 10.1017/fms.2023.78
LA  - en
ID  - 10_1017_fms_2023_78
ER  - 
%0 Journal Article
%A Kathryn Mann
%A Jason Fox Manning
%T Stability for hyperbolic groups acting on boundary spheres
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.78/
%R 10.1017/fms.2023.78
%G en
%F 10_1017_fms_2023_78
Kathryn Mann; Jason Fox Manning. Stability for hyperbolic groups acting on boundary spheres. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.78

Cité par Sources :