Stability for hyperbolic groups acting on boundary spheres
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              A hyperbolic group G acts by homeomorphisms on its Gromov boundary. We show that if $\partial G$ is a topological n–sphere, the action is topologically stable in the dynamical sense: any nearby action is semi-conjugate to the standard boundary action.
            
            
            
          
        
      @article{10_1017_fms_2023_78,
     author = {Kathryn Mann and Jason Fox Manning},
     title = {Stability for hyperbolic groups acting on boundary spheres},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.78},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.78/}
}
                      
                      
                    TY - JOUR AU - Kathryn Mann AU - Jason Fox Manning TI - Stability for hyperbolic groups acting on boundary spheres JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.78/ DO - 10.1017/fms.2023.78 LA - en ID - 10_1017_fms_2023_78 ER -
Kathryn Mann; Jason Fox Manning. Stability for hyperbolic groups acting on boundary spheres. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.78
Cité par Sources :
