Derived Category and ACM Bundles of Moduli Space of Vector Bundles on a Curve
Forum of Mathematics, Sigma, Tome 11 (2023)
Voir la notice de l'article provenant de la source Cambridge University Press
We show that the derived category of a curve is embedded into the derived category of the moduli space of vector bundles on the curve of coprime rank and degree. We also generalize the semiorthogonal decomposition constructed by Narasimhan and Belmans-Mukhopadhyay. Finally, we produce a one-dimensional family of ACM bundles over the moduli space.
@article{10_1017_fms_2023_75,
author = {Kyoung-Seog Lee and Han-Bom Moon},
title = {Derived {Category} and {ACM} {Bundles} of {Moduli} {Space} of {Vector} {Bundles} on a {Curve}},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fms.2023.75},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.75/}
}
TY - JOUR AU - Kyoung-Seog Lee AU - Han-Bom Moon TI - Derived Category and ACM Bundles of Moduli Space of Vector Bundles on a Curve JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.75/ DO - 10.1017/fms.2023.75 LA - en ID - 10_1017_fms_2023_75 ER -
%0 Journal Article %A Kyoung-Seog Lee %A Han-Bom Moon %T Derived Category and ACM Bundles of Moduli Space of Vector Bundles on a Curve %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.75/ %R 10.1017/fms.2023.75 %G en %F 10_1017_fms_2023_75
Kyoung-Seog Lee; Han-Bom Moon. Derived Category and ACM Bundles of Moduli Space of Vector Bundles on a Curve. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.75
Cité par Sources :