Cusps, Kleinian groups, and Eisenstein series
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the Eisenstein series associated to the full rank cusps in a complete hyperbolic manifold. We show that given a Kleinian group $\Gamma {\operatorname{\mathrm{Isom}}}^+(\mathbb H^{n+1})$, each full rank cusp corresponds to a cohomology class in $H^{n}(\Gamma , V)$, where V is either the trivial coefficient or the adjoint representation. Moreover, by computing the intertwining operator, we show that different cusps give rise to linearly independent classes.
@article{10_1017_fms_2023_73,
     author = {Beibei Liu and Shi Wang},
     title = {Cusps, {Kleinian} groups, and {Eisenstein} series},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.73},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.73/}
}
TY  - JOUR
AU  - Beibei Liu
AU  - Shi Wang
TI  - Cusps, Kleinian groups, and Eisenstein series
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.73/
DO  - 10.1017/fms.2023.73
LA  - en
ID  - 10_1017_fms_2023_73
ER  - 
%0 Journal Article
%A Beibei Liu
%A Shi Wang
%T Cusps, Kleinian groups, and Eisenstein series
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.73/
%R 10.1017/fms.2023.73
%G en
%F 10_1017_fms_2023_73
Beibei Liu; Shi Wang. Cusps, Kleinian groups, and Eisenstein series. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.73

Cité par Sources :