Cusps, Kleinian groups, and Eisenstein series
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We study the Eisenstein series associated to the full rank cusps in a complete hyperbolic manifold. We show that given a Kleinian group $\Gamma {\operatorname{\mathrm{Isom}}}^+(\mathbb H^{n+1})$, each full rank cusp corresponds to a cohomology class in $H^{n}(\Gamma , V)$, where V is either the trivial coefficient or the adjoint representation. Moreover, by computing the intertwining operator, we show that different cusps give rise to linearly independent classes.
            
            
            
          
        
      @article{10_1017_fms_2023_73,
     author = {Beibei Liu and Shi Wang},
     title = {Cusps, {Kleinian} groups, and {Eisenstein} series},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.73},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.73/}
}
                      
                      
                    Beibei Liu; Shi Wang. Cusps, Kleinian groups, and Eisenstein series. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.73
Cité par Sources :