Albert algebras over $\mathbb {Z}$ and other rings
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative nonassociative algebras and also arise naturally in the context of simple affine group schemes of type $\mathsf {F}_4$, $\mathsf {E}_6$, or $\mathsf {E}_7$. We study these objects over an arbitrary base ring R, with particular attention to the case $R = \mathbb {Z}$. We prove in this generality results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.
@article{10_1017_fms_2023_7,
     author = {Skip Garibaldi and Holger P. Petersson and Michel L. Racine},
     title = {Albert algebras over $\mathbb {Z}$ and other rings},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.7/}
}
TY  - JOUR
AU  - Skip Garibaldi
AU  - Holger P. Petersson
AU  - Michel L. Racine
TI  - Albert algebras over $\mathbb {Z}$ and other rings
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.7/
DO  - 10.1017/fms.2023.7
LA  - en
ID  - 10_1017_fms_2023_7
ER  - 
%0 Journal Article
%A Skip Garibaldi
%A Holger P. Petersson
%A Michel L. Racine
%T Albert algebras over $\mathbb {Z}$ and other rings
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.7/
%R 10.1017/fms.2023.7
%G en
%F 10_1017_fms_2023_7
Skip Garibaldi; Holger P. Petersson; Michel L. Racine. Albert algebras over $\mathbb {Z}$ and other rings. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.7

Cité par Sources :