Albert algebras over $\mathbb {Z}$ and other rings
Forum of Mathematics, Sigma, Tome 11 (2023)
Voir la notice de l'article provenant de la source Cambridge University Press
Albert algebras, a specific kind of Jordan algebra, are naturally distinguished objects among commutative nonassociative algebras and also arise naturally in the context of simple affine group schemes of type $\mathsf {F}_4$, $\mathsf {E}_6$, or $\mathsf {E}_7$. We study these objects over an arbitrary base ring R, with particular attention to the case $R = \mathbb {Z}$. We prove in this generality results previously in the literature in the special case where R is a field of characteristic different from 2 and 3.
@article{10_1017_fms_2023_7,
author = {Skip Garibaldi and Holger P. Petersson and Michel L. Racine},
title = {Albert algebras over $\mathbb {Z}$ and other rings},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fms.2023.7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.7/}
}
TY - JOUR
AU - Skip Garibaldi
AU - Holger P. Petersson
AU - Michel L. Racine
TI - Albert algebras over $\mathbb {Z}$ and other rings
JO - Forum of Mathematics, Sigma
PY - 2023
VL - 11
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.7/
DO - 10.1017/fms.2023.7
LA - en
ID - 10_1017_fms_2023_7
ER -
Skip Garibaldi; Holger P. Petersson; Michel L. Racine. Albert algebras over $\mathbb {Z}$ and other rings. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.7
Cité par Sources :