On the kernel of the $(\kappa ,a)$-Generalized fourier transform
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

For the kernel $B_{\kappa ,a}(x,y)$ of the $(\kappa ,a)$-generalized Fourier transform $\mathcal {F}_{\kappa ,a}$, acting in $L^{2}(\mathbb {R}^{d})$ with the weight $|x|^{a-2}v_{\kappa }(x)$, where $v_{\kappa }$ is the Dunkl weight, we study the important question of when $\|B_{\kappa ,a}\|_{\infty }=B_{\kappa ,a}(0,0)=1$. The positive answer was known for $d\ge 2$ and $\frac {2}{a}\in \mathbb {N}$. We investigate the case $d=1$ and $\frac {2}{a}\in \mathbb {N}$. Moreover, we give sufficient conditions on parameters for $\|B_{\kappa ,a}\|_{\infty }>1$ to hold with $d\ge 1$ and any a.We also study the image of the Schwartz space under the $\mathcal {F}_{\kappa ,a}$ transform. In particular, we obtain that $\mathcal {F}_{\kappa ,a}(\mathcal {S}(\mathbb {R}^d))=\mathcal {S}(\mathbb {R}^d)$ only if $a=2$. Finally, extending the Dunkl transform, we introduce nondeformed transforms generated by $\mathcal {F}_{\kappa ,a}$ and study their main properties.
@article{10_1017_fms_2023_69,
     author = {Dmitry Gorbachev and Valerii Ivanov and Sergey Tikhonov},
     title = {On the kernel of the $(\kappa ,a)${-Generalized} fourier transform},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.69},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.69/}
}
TY  - JOUR
AU  - Dmitry Gorbachev
AU  - Valerii Ivanov
AU  - Sergey Tikhonov
TI  - On the kernel of the $(\kappa ,a)$-Generalized fourier transform
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.69/
DO  - 10.1017/fms.2023.69
LA  - en
ID  - 10_1017_fms_2023_69
ER  - 
%0 Journal Article
%A Dmitry Gorbachev
%A Valerii Ivanov
%A Sergey Tikhonov
%T On the kernel of the $(\kappa ,a)$-Generalized fourier transform
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.69/
%R 10.1017/fms.2023.69
%G en
%F 10_1017_fms_2023_69
Dmitry Gorbachev; Valerii Ivanov; Sergey Tikhonov. On the kernel of the $(\kappa ,a)$-Generalized fourier transform. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.69

Cité par Sources :