Nonsolidity of uniruled varieties
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We give conditions for a uniruled variety of dimension at least 2 to be nonsolid. This study provides further evidence to a conjecture by Abban and Okada on the solidity of Fano 3-folds. To complement our results we write explicit birational links from Fano 3-folds of high codimension embedded in weighted projective spaces.
@article{10_1017_fms_2023_66,
     author = {Livia Campo and Tiago Duarte Guerreiro},
     title = {Nonsolidity of uniruled varieties},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.66},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.66/}
}
TY  - JOUR
AU  - Livia Campo
AU  - Tiago Duarte Guerreiro
TI  - Nonsolidity of uniruled varieties
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.66/
DO  - 10.1017/fms.2023.66
LA  - en
ID  - 10_1017_fms_2023_66
ER  - 
%0 Journal Article
%A Livia Campo
%A Tiago Duarte Guerreiro
%T Nonsolidity of uniruled varieties
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.66/
%R 10.1017/fms.2023.66
%G en
%F 10_1017_fms_2023_66
Livia Campo; Tiago Duarte Guerreiro. Nonsolidity of uniruled varieties. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.66

Cité par Sources :