Homological Bondal-Orlov localization conjecture for rational singularities
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Given a resolution of rational singularities $\pi \colon {\tilde {X}} \to X$ over a field of characteristic zero, we use a Hodge-theoretic argument to prove that the image of the functor ${\mathbf {R}}\pi _*\colon {\mathbf {D}}^{\mathrm {b}}({\tilde {X}}) \to {\mathbf {D}}^{\mathrm {b}}(X)$ between bounded derived categories of coherent sheaves generates ${\mathbf {D}}^{\mathrm {b}}(X)$ as a triangulated category. This gives a weak version of the Bondal–Orlov localization conjecture [BO02], answering a question from [PS21]. The same result is established more generally for proper (not necessarily birational) morphisms $\pi \colon {\tilde {X}} \to X$, with ${\tilde {X}}$ smooth, satisfying ${\mathbf {R}}\pi _*({\mathcal {O}}_{\tilde {X}}) = {\mathcal {O}}_X$.
            
            
            
          
        
      @article{10_1017_fms_2023_65,
     author = {Mirko Mauri and Evgeny Shinder},
     title = {Homological {Bondal-Orlov} localization conjecture for rational singularities},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.65},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.65/}
}
                      
                      
                    TY - JOUR AU - Mirko Mauri AU - Evgeny Shinder TI - Homological Bondal-Orlov localization conjecture for rational singularities JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.65/ DO - 10.1017/fms.2023.65 LA - en ID - 10_1017_fms_2023_65 ER -
Mirko Mauri; Evgeny Shinder. Homological Bondal-Orlov localization conjecture for rational singularities. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.65
Cité par Sources :
