Decidability of the class of all the rings $\mathbb {Z}/m\mathbb {Z}$: A problem of Ax
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the class of all the rings $\mathbb {Z}/m\mathbb {Z}$ for all $m>1$ is decidable. This gives a positive solution to a problem of Ax asked in his celebrated 1968 paper on the elementary theory of finite fields [1, Problem 5, p. 270]. In our proof, we reduce the problem to the decidability of the ring of adeles $\mathbb {A}_{\mathbb {Q}}$ of $\mathbb {Q}$.
@article{10_1017_fms_2023_62,
     author = {Jamshid Derakhshan and Angus Macintyre},
     title = {Decidability of the class of all the rings $\mathbb {Z}/m\mathbb {Z}$: {A} problem of {Ax}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.62},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.62/}
}
TY  - JOUR
AU  - Jamshid Derakhshan
AU  - Angus Macintyre
TI  - Decidability of the class of all the rings $\mathbb {Z}/m\mathbb {Z}$: A problem of Ax
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.62/
DO  - 10.1017/fms.2023.62
LA  - en
ID  - 10_1017_fms_2023_62
ER  - 
%0 Journal Article
%A Jamshid Derakhshan
%A Angus Macintyre
%T Decidability of the class of all the rings $\mathbb {Z}/m\mathbb {Z}$: A problem of Ax
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.62/
%R 10.1017/fms.2023.62
%G en
%F 10_1017_fms_2023_62
Jamshid Derakhshan; Angus Macintyre. Decidability of the class of all the rings $\mathbb {Z}/m\mathbb {Z}$: A problem of Ax. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.62

Cité par Sources :