Remixed Eulerian numbers
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Remixed Eulerian numbers are a polynomial q-deformation of Postnikov’s mixed Eulerian numbers. They arose naturally in previous work by the authors concerning the permutahedral variety and subsume well-known families of polynomials such as q-binomial coefficients and Garsia–Remmel’s q-hit numbers. We study their combinatorics in more depth. As polynomials in q, they are shown to be symmetric and unimodal. By interpreting them as computing success probabilities in a simple probabilistic process we arrive at a combinatorial interpretation involving weighted trees. By decomposing the permutahedron into certain combinatorial cubes, we obtain a second combinatorial interpretation. At $q=1$, the former recovers Postnikov’s interpretation whereas the latter recovers Liu’s interpretation, both of which were obtained via methods different from ours.
@article{10_1017_fms_2023_57,
     author = {Philippe Nadeau and Vasu Tewari},
     title = {Remixed {Eulerian} numbers},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.57},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.57/}
}
TY  - JOUR
AU  - Philippe Nadeau
AU  - Vasu Tewari
TI  - Remixed Eulerian numbers
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.57/
DO  - 10.1017/fms.2023.57
LA  - en
ID  - 10_1017_fms_2023_57
ER  - 
%0 Journal Article
%A Philippe Nadeau
%A Vasu Tewari
%T Remixed Eulerian numbers
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.57/
%R 10.1017/fms.2023.57
%G en
%F 10_1017_fms_2023_57
Philippe Nadeau; Vasu Tewari. Remixed Eulerian numbers. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.57

Cité par Sources :