Sparse analytic systems
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Erdős [7] proved that the Continuum Hypothesis (CH) is equivalent to the existence of an uncountable family $\mathcal {F}$ of (real or complex) analytic functions, such that $\big \{ f(x) \ : \ f \in \mathcal {F} \big \}$ is countable for every x. We strengthen Erdős’ result by proving that CH is equivalent to the existence of what we call sparse analytic systems of functions. We use such systems to construct, assuming CH, an equivalence relation $\sim $ on $\mathbb {R}$ such that any ‘analytic-anonymous’ attempt to predict the map $x \mapsto [x]_\sim $ must fail almost everywhere. This provides a consistently negative answer to a question of Bajpai-Velleman [2].
@article{10_1017_fms_2023_54,
     author = {Brent Cody and Sean Cox and Kayla Lee},
     title = {Sparse analytic systems},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.54/}
}
TY  - JOUR
AU  - Brent Cody
AU  - Sean Cox
AU  - Kayla Lee
TI  - Sparse analytic systems
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.54/
DO  - 10.1017/fms.2023.54
LA  - en
ID  - 10_1017_fms_2023_54
ER  - 
%0 Journal Article
%A Brent Cody
%A Sean Cox
%A Kayla Lee
%T Sparse analytic systems
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.54/
%R 10.1017/fms.2023.54
%G en
%F 10_1017_fms_2023_54
Brent Cody; Sean Cox; Kayla Lee. Sparse analytic systems. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.54

Cité par Sources :