On Bloch’s map for torsion cycles over non-closed fields
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We generalize Bloch’s map on torsion cycles from algebraically closed fields to arbitrary fields. While Bloch’s map over algebraically closed fields is injective for zero-cycles and for cycles of codimension at most two, we show that the generalization to arbitrary fields is only injective for cycles of codimension at most two but, in general, not for zero-cycles. Our result implies that Jannsen’s cycle class map in integral $\ell $-adic continuous étale cohomology is, in general, not injective on torsion zero-cycles over finitely generated fields. This answers a question of Scavia and Suzuki.
@article{10_1017_fms_2023_51,
     author = {Theodosis Alexandrou and Stefan Schreieder},
     title = {On {Bloch{\textquoteright}s} map for torsion cycles over non-closed fields},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.51},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.51/}
}
TY  - JOUR
AU  - Theodosis Alexandrou
AU  - Stefan Schreieder
TI  - On Bloch’s map for torsion cycles over non-closed fields
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.51/
DO  - 10.1017/fms.2023.51
LA  - en
ID  - 10_1017_fms_2023_51
ER  - 
%0 Journal Article
%A Theodosis Alexandrou
%A Stefan Schreieder
%T On Bloch’s map for torsion cycles over non-closed fields
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.51/
%R 10.1017/fms.2023.51
%G en
%F 10_1017_fms_2023_51
Theodosis Alexandrou; Stefan Schreieder. On Bloch’s map for torsion cycles over non-closed fields. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.51

Cité par Sources :