Finite subgroups of automorphisms of K3 surfaces
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We give a complete classification of finite subgroups of automorphisms of K3 surfaces up to deformation. The classification is in terms of Hodge theoretic data associated to certain conjugacy classes of finite subgroups of the orthogonal group of the K3 lattice. The moduli theory of K3 surfaces, in particular the surjectivity of the period map and the strong Torelli theorem allow us to interpret this datum geometrically. Our approach is computer aided and involves Hermitian lattices over number fields.
@article{10_1017_fms_2023_50,
     author = {Simon Brandhorst and Tommy Hofmann},
     title = {Finite subgroups of automorphisms of {K3} surfaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.50},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.50/}
}
TY  - JOUR
AU  - Simon Brandhorst
AU  - Tommy Hofmann
TI  - Finite subgroups of automorphisms of K3 surfaces
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.50/
DO  - 10.1017/fms.2023.50
LA  - en
ID  - 10_1017_fms_2023_50
ER  - 
%0 Journal Article
%A Simon Brandhorst
%A Tommy Hofmann
%T Finite subgroups of automorphisms of K3 surfaces
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.50/
%R 10.1017/fms.2023.50
%G en
%F 10_1017_fms_2023_50
Simon Brandhorst; Tommy Hofmann. Finite subgroups of automorphisms of K3 surfaces. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.50

Cité par Sources :