Nonemptiness of severi varieties on enriques surfaces
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $(S,L)$ be a general polarised Enriques surface, with L not numerically 2-divisible. We prove the existence of regular components of all Severi varieties of irreducible nodal curves in the linear system $|L|$, that is, for any number of nodes $\delta =0, \ldots , p_a(L)-1$. This solves a classical open problem and gives a positive answer to a recent conjecture of Pandharipande–Schmitt, under the additional condition of non-2-divisibility.
@article{10_1017_fms_2023_47,
     author = {Ciro Ciliberto and Thomas Dedieu and Concettina Galati and Andreas Leopold Knutsen},
     title = {Nonemptiness of severi varieties on enriques surfaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.47},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.47/}
}
TY  - JOUR
AU  - Ciro Ciliberto
AU  - Thomas Dedieu
AU  - Concettina Galati
AU  - Andreas Leopold Knutsen
TI  - Nonemptiness of severi varieties on enriques surfaces
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.47/
DO  - 10.1017/fms.2023.47
LA  - en
ID  - 10_1017_fms_2023_47
ER  - 
%0 Journal Article
%A Ciro Ciliberto
%A Thomas Dedieu
%A Concettina Galati
%A Andreas Leopold Knutsen
%T Nonemptiness of severi varieties on enriques surfaces
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.47/
%R 10.1017/fms.2023.47
%G en
%F 10_1017_fms_2023_47
Ciro Ciliberto; Thomas Dedieu; Concettina Galati; Andreas Leopold Knutsen. Nonemptiness of severi varieties on enriques surfaces. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.47

Cité par Sources :