Multiple generalized cluster structures on $D(\mathrm {GL}_n)$
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We produce a large class of generalized cluster structures on the Drinfeld double of $\operatorname {\mathrm {GL}}_n$ that are compatible with Poisson brackets given by Belavin–Drinfeld classification. The resulting construction is compatible with the previous results on cluster structures on $\operatorname {\mathrm {GL}}_n$.
            
            
            
          
        
      @article{10_1017_fms_2023_44,
     author = {Dmitriy Voloshyn},
     title = {Multiple generalized cluster structures on $D(\mathrm {GL}_n)$},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.44},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.44/}
}
                      
                      
                    Dmitriy Voloshyn. Multiple generalized cluster structures on $D(\mathrm {GL}_n)$. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.44
                  
                Cité par Sources :
