Multiple generalized cluster structures on $D(\mathrm {GL}_n)$
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We produce a large class of generalized cluster structures on the Drinfeld double of $\operatorname {\mathrm {GL}}_n$ that are compatible with Poisson brackets given by Belavin–Drinfeld classification. The resulting construction is compatible with the previous results on cluster structures on $\operatorname {\mathrm {GL}}_n$.
@article{10_1017_fms_2023_44,
     author = {Dmitriy Voloshyn},
     title = {Multiple generalized cluster structures on $D(\mathrm {GL}_n)$},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.44},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.44/}
}
TY  - JOUR
AU  - Dmitriy Voloshyn
TI  - Multiple generalized cluster structures on $D(\mathrm {GL}_n)$
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.44/
DO  - 10.1017/fms.2023.44
LA  - en
ID  - 10_1017_fms_2023_44
ER  - 
%0 Journal Article
%A Dmitriy Voloshyn
%T Multiple generalized cluster structures on $D(\mathrm {GL}_n)$
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.44/
%R 10.1017/fms.2023.44
%G en
%F 10_1017_fms_2023_44
Dmitriy Voloshyn. Multiple generalized cluster structures on $D(\mathrm {GL}_n)$. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.44

Cité par Sources :