Geometrical sets with forbidden configurations
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Given finite configurations $P_1, \dots , P_n \subset \mathbb {R}^d$, let us denote by $\mathbf {m}_{\mathbb {R}^d}(P_1, \dots , P_n)$ the maximum density a set $A \subseteq \mathbb {R}^d$ can have without containing congruent copies of any $P_i$. We will initiate the study of this geometrical parameter, called the independence density of the considered configurations, and give several results we believe are interesting. For instance we show that, under suitable size and nondegeneracy conditions, $\mathbf {m}_{\mathbb {R}^d}(t_1 P_1, t_2 P_2, \dots , t_n P_n)$ progressively ‘untangles’ and tends to $\prod _{i=1}^n \mathbf {m}_{\mathbb {R}^d}(P_i)$ as the ratios $t_{i+1}/t_i$ between consecutive dilation parameters grow large; this shows an exponential decay on the density when forbidding multiple dilates of a given configuration, and gives a common generalization of theorems by Bourgain and by Bukh in geometric Ramsey theory. We also consider the analogous parameter $\mathbf {m}_{\mathbb {S}^d}(P_1, \dots , P_n)$ in the more complicated framework of sets on the unit sphere $\mathbb {S}^d$, obtaining the corresponding results in this setting.
@article{10_1017_fms_2023_43,
     author = {Davi Castro-Silva},
     title = {Geometrical sets with forbidden configurations},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.43},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.43/}
}
TY  - JOUR
AU  - Davi Castro-Silva
TI  - Geometrical sets with forbidden configurations
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.43/
DO  - 10.1017/fms.2023.43
LA  - en
ID  - 10_1017_fms_2023_43
ER  - 
%0 Journal Article
%A Davi Castro-Silva
%T Geometrical sets with forbidden configurations
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.43/
%R 10.1017/fms.2023.43
%G en
%F 10_1017_fms_2023_43
Davi Castro-Silva. Geometrical sets with forbidden configurations. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.43

Cité par Sources :